Journal of Organometallic Chemistry, 384 (1990) 295-304 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20485

Antiferromagnetic complexes with metal-metal bonds

XXI *. Reactions of $Cp_2Cr_2(\mu$ -OCMe₃)₂ with chalcogens (S, Se, Te). Syntheses and molecular structures of $Cp_2Cr_2(\mu$ -OCMe₃)₂(μ -S₄) and $Cp_2Cr_2(\mu$ -OCMe₃)₂(μ -Se)

S.E. Nefedov, A.A. Pasynskii *, I.L. Eremenko, B. Orazsakhatov, V.M. Novotortsev, O.G. Ellert

N.S. Kurnakov Institute of General and Inorganic Chemistry, Academy of Sciences of the U.S.S.R., 31 Leninsky prosp., 117071 Moscow (U.S.S.R.)

A.I. Yanovsky, and Yu.T. Struchkov

A.N. Nesmeyanov Institute of Organoelement Compounds, Academy of Sciences of the U.S.S.R., 28 Vavilov St., 117813 Moscow (U.S.S.R.)

(Received September 20th, 1989)

Abstract

Reactions of $Cp_2Cr_2(\mu-OR)_2$ (I) (R = CMe₃) with chalcogens have been studied. It is shown that reaction of I with S_8 (benzene-heptane, 20°C) results in the formation of a green complex $Cp_2Cr_2(\mu$ -OR)₂(μ -S₄) (III), which from its X-ray diffraction data (space group $P4_{1}2_{1}2$, a = b = 18,20(5), c = 30.14(3) Å) was found to possess two chromium atoms (with a Cr-Cr distance of 2.955(4) Å) and four sulfur atoms in a six-membered Cr₂S₄ metal cycle (Cr-S, 2.323(6), 2.354(6) Å, S-S 2.077(9), 1.976(12), 2.053(9) Å). The Cp rings are cis relative to the Cr-Cr bond (the CpCrCr angle is 134.5°). Reaction of I with the metals Se or Te under the same conditions yields the complexes $Cp_2Cr_2(\mu$ -OR)_2(μ -E) (E = Se (IV), Te (IVa)). The X-ray diffraction data (space group $P\overline{1}$, a = 8.3983(8), b = 9.2732(9), c = 14.3254(10)Å, $\alpha = 76.977(7)$, $\beta = 77.326(7)$, $\gamma = 64.653(7)^{\circ}$) show that the Cr–Cr bond in IV is shortened to 2.617(6) Å, and that the CpCrCrCp molety has a linear configuration (CpCrCr 172.5°). Complexes III, IV and IVa are thermally unstable and at 60°C, and undergo disproportionation to give $Cp_2Cr_2(\mu-OR)_2(OR)_2$ (V) and the corresponding tetrahedral clusters Cp₄Cr₄E₄. Binuclear complexes III, IV, and IVa are antiferromagnetic, the exchange parameter -2J depends primarily on the geometry of the Cp₂Cr₂ fragment.

^{*} For part XX see ref. 3.

Introduction

We have recently shown that the binuclear complex $Cp_2Cr_2(\mu$ -OR)₂ (I, R = CMe₃ [1]), formed by the interaction of chromocene with HOCMe₃, can be readily oxidized by CH_2X_2 (X = Cl, Br, I) to $Cp_2Cr_2X_2(\mu$ -OR)₂ (II), which causes considerable elongation of the Cr-Cr distance to 2.917, 2.971, 2.967 Å for X = Cl, Br, I, respectively, as compared with complex I (2.635 Å). This is a consequence of a decrease in the Cp(centre)CrCr angle from 145° in complex I to 126.6, 131.6, 131.7° for X = Cl, Br, I respectively. This angle determines the degree of σ -bonding which is due to the overlap of d_{z^2} orbitals at the metal atoms [2].

Complex I can be also oxidized by binuclear carbonyls, e.g. by cobalt carbonyl with the formation of $Cp_2Cr_2(\mu-OR)_2(OCCo_3(CO)_9)$, in which only one chromium atom is oxidized to Cr^{III} as a result of the addition of $(\mu_3-OC)(Co_3(CO)_9)$ fragment to the oxygen atom at the bridging CO group [3]. This results in a considerable decrease of the Cp(centre)CrCr angle at Cr^{III} as compared to Cr^{II} (117.2° and 155.7°, respectively). In this case the Cr–Cr bond is weakened to a lesser extent (to 2.766 Å) and the -2J value is decreased to 180 cm⁻¹, which lies between the values for I, (204 cm⁻¹) and those for II (150–160 cm⁻¹). Finally, if the Fe(CO)₄ fragment is added to I by two Cr–Fe bonds (2.691 and 2.702 Å) the CpCrCrCp system becomes linear. It enhances the overlap of d_{2^2} orbitals. The Cr–Cr bond become shorter (2.635 Å) and the exchange parameter -2J increases to 304 cm⁻¹ [4]. Since the frontier orbitals of the Fe(CO)₄ fragment resemble those of the chalcogen (S, Se, Te) atoms the same geometry and electronic effects on their bonding with complex I were expected.

Furthermore, it was of interest to compare the properties of the expected chalcogen derivatives of the complex I with the characteristics of the sulfidethiolate complex we described previously— $Cp_2Cr_2(\mu$ -SCMe₃)₂(μ -S)—which had a short Cr–Cr bond (2.689 Å) in the linear fragment CpCrCrCp (CpCrCr ~ 180°) [5], and the increased as compared to I value of the exchange parameter (-2J 430 cm⁻¹).

Results and discussion

The outcome of the interaction of $Cp_2Cr_2(\mu$ -OCMe₃)₂ (I) with sulfur (S₈) or metallic selenium or tellurium depends on the nature of the element. Thus, reaction of complex I with S₈ in benzene/heptane mixture at 20°C gives the complex $Cp_2Cr_2(\mu$ -OCMe₃)₂(μ -S₄) (III) in as large green prisms.

The X-ray diffraction data (Table 1) show that in molecule III the S₄ group (half of the initial S₈ molecule), having S-S distances of 2.053(9), 1.976(12), 2.077(9) Å,

Fig. 1. The structure of $Cp_2Cr_2(\mu$ -OCMe₃)₂(μ -S₄) (III).

links two chromium atoms (Cr-S 2.323(6), 2.354(6) Å), to form a six-membered cycle Cr_2S_4 in the distorted chair conformation * (Fig. 1). The geometry of the binuclear fragment $Cp_2Cr_2(\mu$ -OR)_2(X)_2 (X = terminal sulfur atoms of the S₄ chain) in III (Cr-Cr 2.955(4), Cr-S_{av.} 2.338 Å, CpCrCr 134.5°) closely resembles that observed in the halogen-containing complexes $Cp_2Cr_2(\mu$ -OCMe₃)_2X_2 (X = Cl, Br, I) [2]. The only significant difference lies in the values of dihedral angle between the wings of the Cr_2O_2 butterfly (164.6° in III, and 151.3°, 156.4 and 158.9° in II for X = Cl, Br, I, respectively), however, in all these cases the X atoms are located in the bisecting plane of this angle. Nevertheless this difference does not influence the magnetic properties of II (μ_{eff} changes from 2.19 to 0.93 BM in the temperature range of 289-77 K, -2J = 164 cm⁻¹) as compared with the halogen derivatives II (-2J = 148-168 cm⁻¹ [2]).

Unlike the reaction with S_8 , an interaction of complex I with the powdered selenium or tellurium metal (in pentane at 20°C) results in addition of only one bridging chalcogen atom:

^{*} The unit cell contains two independent molecules $Cp_2Cr_2(\mu-OCMe_3)_2(\mu-S_4)$, one of them has a disordered S_4 group and slightly disordered OCMe₃ bridges. Therefore only characteristics of the first (ordered) molecule are given in the text.

Fig. 2. The structure of $Cp_2Cr_2(\mu$ -OCMe_3)₂(μ -Se) (IV).

The complexes $Cp_2C_2(\mu$ -OCMe₃)₂(μ -E) (IV, E = Se; IVa, E = Te) were isolated as green-brown and brick-red crystals, respectively. The X-ray diffraction study of IV (see also Fig. 2) shows that addition of Se atom to two chromium atoms (Cr-Se 2.394(6) Å) results in an almost linear Cp_2Cr_2 group (Cp(centre) Cr-Cr_{mean} 172.5°) which as shown previously [3], strengthens and shortens the Cr-Cr bond to 2.617(6) Å and increases the antiferromagnetic exchange parameter to -2J = 290 cm⁻¹ (μ_{eff} decreases from 1.68 to 1.07 BM in the temperature range of 290-77 K). This value approaches the 304 cm⁻¹ for $Cp_2Cr_2(\mu$ -OCMe₃)₂(μ -Fe(CO)₄) (V) whose binuclear fragment $Cp_2Cr_2(\mu$ -OCMe₃)₂ (Cr-Cr 2.635 Å, CpCrCr 178°) [4] has a geometry very similar to that in IV. At the same time the -2J value for IV is much lower than the 430 cm⁻¹ for the isoelectronic antiferromagnetic analogue $Cp_2Cr_2(\mu$ -SCMe₃)₂(μ -S) (VI), which also has a linear Cp_2Cr_2 (Cr-Cr 2.689 Å) fragment [5]. This difference is probably attributable to enhanced indirect exchange interactions via the two bridging thiolate and single sulfide ligands [5] relative to the exchange via the two alkoxide ligands and the single selenide bridge.

The thermally unstable complexes IV and IVa on heating above 60 °C undergo disproportionation in solution to give the binuclear tetraalkoxide complex $Cp_2Cr_2(OCMe_3)_2(\mu$ -OCMe_3)_2 [3] and the corresponding tetramers $Cp_4Cr_4E_4$ (E = Se, Te). The disproportionation probably occurs via an intermediate (A) which has a ligand geometry about each chromium atom close to that observed in the halogenide complexes $Cp_2Cr_2(OR)_2X_2$. The tetrahedral clusters have been also independently

Table 1

	I		IV		v		VI	
	$\mathbf{E} = \mathbf{O}\left[1\right]$]	E = O X = Se		E = O X = Fc	[4] c(CO) ₄	E = S[X = S]	5]
Cr–Cr (Å)	2.635	5	2.6	17	2.0	535	2.6	589
Cr–μ-Ε (Å)	1.983	3	1.9	7	1.9	979	2.3	88
Cr-μ-Χ (Å)	-		2.3 2.7	94 107	2.0	591	2.2	24
CrXCr (°)	-		66	.2	83	.3	68	.3
Cp*CrCl " (°)	145		17	0–175	17	6	17	8
$\frac{S_{Cr_1}/S_{Cr_2}}{-zJ_{Cr-Cr}}$ (cm ⁻¹)	3/2 204	3/2	3/2 29	3/2 0	3/2 30	3/2 4	3/2 43	3/2 0

Comparison of geometry and magnetic characteristics of $Cp_2Cr_2(\mu$ -ECMe_3)₂(μ -X) and $Cp_2Cr_2(\mu$ -OCMe₃)₂

^{*a*} Cp^{\star} = centre of the C₅H₅ ring.

synthesized by the reaction of $(MeC_5H_4)_2Cr$ and chalcogens and identified from their mass-spectra; the selenium-containing analogue has been also identified by an X-ray diffraction studies [6].

Experimental

All syntheses were carried out under pure argon in absolute solvents. The initial complexes $(RC_5H_4)_2Cr$ and $Cp_2Cr_2(\mu$ -OCMe₃)₂ were synthesized by standard

Table 2

Atom	Molecule A			Molecule B		
	x	у	Z	x	ŗ	2
Cr(1)	0.5781(3)	0.1416(3)	0.0959(2)	0.3078(4)	0.8620(4)	0.0728(2)
Cr(2)	0.7219(3)	0.1758(4)	0.1364(2)	0.3582(4)	0.7920(5)	0.1527(2)
S(1)	0.5049(6)	0.0779(7)	0.1460(4)	0.2030(8)	0.7994(8)	0.0467(5)
S(2)	0.5675(9)	0.0342(8)	0.1972(4)	0.200(1)	0.694(1)	0.0718(7)
S(3)	0.6204(8)	0.111(1)	0.2310(4)	0.185(1)	0.710(2)	0.1429(9)
S(4)	0.7257(6)	0.1277(7)	0.2089(3)	0.2837(8)	0.6917(9)	0.1706(5)
S(2) "				0.179(2)	0.710(2)	0.079(2)
$S(3)^{a}$				0.209(2)	0.670(2)	0.126(1)
O(1)	0.676(1)	0.091(1)	0.1045(7)	0.370(2)	0.773(2)	0.093(1)
O(2)	0.618(1)	0.211(1)	0.1352(7)	0.281(2)	0.862(2)	0.1372(9)
C(1)	0.699(2)	0.018(2)	0.090(1)	0.398(2)	0.726(2)	0.064(1)
C(2)	0.760(2)	0.002(2)	0.122(1)	0.484(3)	0.762(3)	0.053(2)
C(3)	0.641(3)	-0.034(2)	0.088(1)	0.402(3)	0.653(3)	0.085(2)
C(4)	0.730(3)	0.022(3)	0.047(2)	0.370(2)	0.708(3)	0.019(1)
C(5)	0.593(3)	0.278(3)	0.151(2)	0.240(3)	0.895(3)	0.158(2)
C(6)	0.504(2)	0.261(2)	0.168(1)	0.262(3)	0.973(3)	0.173(2)
C(7)	0.640(3)	0.301(3)	0.198(2)	0.210(3)	0.864(3)	0.205(2)
C(8)	0.602(3)	0.350(2)	0.123(1)	0.155(2)	0.907(2)	0.132(1)
C(11)	0.475(2)	0.141(2)	0.054(1)	0.364(3)	0.895(3)	0.004(2)
C(12)	0.497(2)	0.206(2)	0.054(1)	0.391(3)	0.934(3)	0.045(2)
C(13)	0.570(2)	0.211(2)	0.034(1)	0.369(3)	0.982(3)	0.075(2)
C(14)	0.586(3)	0.141(3)	0.019(2)	0.287(3)	0.988(3)	0.054(2)
C(15)	0.525(2)	0.101(2)	0.032(1)	0.275(4)	0.932(3)	0.014(2)
C(21)	0.808(3)	0.254(3)	0.157(2)	0.474(3)	0.734(3)	0.166(2)
C(22)	0.835(3)	0.190(3)	0.136(2)	0.489(3)	0.800(4)	0.174(2)
C(23)	0.822(3)	0.180(3)	0.090(2)	0.439(4)	0.866(3)	0.186(2)
C(24)	0.792(3)	0.234(3)	0.080(2)	0.379(4)	0.860(4)	0.220(2)
C(25)	0.771(3)	0.276(3)	0.116(2)	0.412(3)	0.768(3)	0.214(2)
CB(1)	0.579(3)	0.529(3)	0.016(2)	0.971(6)	0.053(6)	0.019(4)
CB(2)	0.551(3)	0.485(3)	0.036(2)	1.002(9)	0.013(9)	0.024(5)
CB(3)	0.499(3)	0.457(3)	0.013(2)	1.031(3)	-0.031(3)	0.039(2)

Positional parameters for complex $Cp_2Cr_2(\mu - OCMe_3)_2(\mu - S_4) \cdot \frac{1}{2}C_6H_6$

^{*a*} Data for one of the two independent molecules with disordered S_4 group S. O and C atoms were refined isotropically. The data listed are for the regular molecule with all the non-hydrogen atoms refined anisotropically.

procedures [7,1]. The IR spectra were recorded in KBr pellets with a Specord 75-IR instrument. Magnetic susceptibility was measured by the Faraday method with apparatus designed by the Institute of General and Inorganic Chemistry [8]. X-ray diffraction data for II and IV were obtained with the automatic diffractometers CAD-4 and Hilger & Watts, respectively (λ MoK_a, θ -2 θ scan, 20°C (Table 8)). Structures of II and IV were solved by direct full-matrix (for III) and blockdiagonal (for IV) approximations for all non-hydrogen atoms (Tables 2-7).

$(C_5H_5)_2Cr_2(\mu - OCMe_3)_2(\mu - S_4)$ (III)

The red-brown solution of $(C_5H_5)_2Cr_2(OCMe_3)$ (obtained from the reaction of Cp_2Cr (0.5 g, 2.74 mmol) with HOCMe₃) in 15 ml of heptane was carefully covered

F22(F	3)2(F4) 2-66 (
2.955(4)	Cr(1)-S(1)	2.323(6)	
2.02(1)	Cr(1)-O(2)	1.88(1)	
2.354(6)	Cr(2) - O(1)	2.01(1)	
2.00(1)	S(1)-S(2)	2.077(9)	
1.976(12)	S(4)-S(3)	2.053(9)	
1.45(2)	O(2)C(5)	1.38(3)	
	2.955(4) 2.02(1) 2.354(6) 2.00(1) 1.976(12) 1.45(2)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 3 Bond lengths in the complex $Cp_2Cr_2(\mu$ -OCMe₃)₂(μ -S₄) $\cdot \frac{1}{2}C_6H_6$ (molecule A)

Table 4

Bond angles (°) in the complex $Cp_2Cr_2(\mu$ -OCMe₃)₂(μ -S₄) $\cdot \frac{1}{2}C_6H_6$ (molecule A)

$\overline{\mathrm{Cr}(2)\mathrm{Cr}(1)\mathrm{S}(1)}$	110.1(2)	S(4)Cr(2)O(1)	99.8(4)	
Cr(2)Cr(1)O(1)	42.7(3)	S(4)Cr(2)O(2)	99.5(3)	
Cr(2)Cr(1)O(2)	42.0(3)	O(1)Cr(2)O(2)	81.2(5)	
S(1)Cr(1)O(1)	101.0(3)	Cr(1)S(1)S(2)	111.1(3)	
S(1)Cr(1)O(2)	98.6(4)	S(1)S(2)S(3)	112.4(5)	
O(1)Cr(1)O(2)	83.7(5)	S(2)S(3)S(4)	113.1(5)	
Cr(1)Cr(2)S(4)	109.3(2)	Cr(2)S(4)S(3)	109.3(3)	
Cr(1)Cr(2)O(1)	43.1(3)	Cr(1)O(1)Cr(2)	94.3(5)	
Cr(1)Cr(2)O(2)	39.0(3)	Cr(1)O(2)Cr(2)	99.1(5)	

Table 5

Positional parameters (for Se and Cr $\times 10^4$, for O and C $\times 10^3$) for Cp₂Cr₂(μ -OCMe₃)₂(μ -Se) (IV)

Atom	x	y	Z	
Se	920(4)	2209(3)	3387(2)	
Cr(1)	1127(5)	734(4)	2160(3)	
Cr(2)	- 1708(5)	1772(4)	3434(3)	
O(1)	- 16(2)	-43(2)	313(1)	
O(2)	-133(2)	213(2)	199(1)	
C(1)	- 47(4)	-176(3)	300(2)	
C(2)	-125(4)	-145(3)	195(2)	
C(3)	-220(3)	-199(3)	370(2)	
C(4)	123(4)	- 339(4)	308(2)	
C(5)	-228(3)	366(3)	131(2)	
C(6)	-214(4)	515(3)	155(2)	
C(7)	-427(3)	387(3)	138(2)	
C(8)	- 129(3)	330(3)	26(2)	
C(9)	321(3)	- 122(3)	127(2)	
C(10)	271(3)	32(3)	64(2)	
C(11)	316(3)	136(3)	97(2)	
C(12)	404(3)	46(3)	179(2)	
C(13)	410(3)	-107(3)	202(2)	
C(14)	- 474(3)	234(3)	400(2)	
C(15)	- 439(3)	382(3)	389(2)	
C(16)	- 316(3)	364(3)	443(2)	
C(17)	-261(3)	203(2)	504(2)	
C(18)	- 360(3)	131(3)	476(2)	

Ta	bl	e	6
----	----	---	---

Atom	x	ر ر	Z	
Se-Cr(1)	2.395(5)	Cr(2)-O(1)	1.98(1)	
Se-Cr(2)	2.394(6)	Cr(2)-O(2)	2.00(1)	
Cr(1)-Cr(2)	2.617(6)	O(1) - C(1)	1.42(3)	
Cr(1) - O(1)	1,98(2)	O(2) - C(5)	1.53(3)	
Cr(1)–O(2)	1.95(2)			

Bond lengths in $Cp_2Cr_2(\mu$ -OCMe₃)₂(μ -Se) (IV).

Table 7

Bond angles (°) in $Cp_2Cr_2(\mu$ -OCMe_3)₂(μ -Se) (IV)

$\overline{\mathrm{Cr}(1)\mathrm{SeCr}(2)}$	66.2(2)	SeCr(2)O(1)	88.4(5)	
SeCr(1)Cr(2)	56.9(1)	SeCR(2)O(2)	88.4(5)	
SeCr(1)O(1)	88.3(5)	Cr(1)Cr(2)O(1)	48.7(5)	
SeCr(1)O(2)	89.7(5)	Cr(1)Cr(2)O(2)	47.6(4)	
Cr(2)Cr(1)O(1)	48.5(5)	O(1)Cr(2)O(2)	77.6(6)	
Cr(2)Cr(1)O(2)	49.4(5)	Cr(1)O(1)Cr(2)	82.7(6)	
O(1)Cr(1)O(2)	78.9(6)	Cr(1)O(2)Cr(2)	83.0(6)	
SeCr(2)Cr(1)	56.9(1)			

Table 8

Crystal data for $Cp_2Cr_2(\mu$ -OCMe₃)₂(μ -S₄) (III) and $Cp_2Cr_2(\mu$ -OCMe₃)₂(μ -Se) (IV)

	III	IV	
Crystal system	tetragonal	triclinic	
Space group	P41212	$P\overline{1}$	
a (Å)	18.20(5)	8.3983(8)	
b (Å)	18.20(5)	9.2732(9)	
c (Å)	30.14(3)	14.3254(10)	
α (°)	90	76.977(7)	
β (°)	90i	77.326(7)	
γ(°)	90	64.653(7)	
$V(\text{\AA}^3)$	9983.6	972.7	
Ζ	8 ^a	2	
Number of reflections measured	2643	1726	
Number of reflections with $I > 3\sigma(I)$	1657	1102	
R ₁	0.10	0.12	
R _w	0.12	0.10	

" Two independent molecules in the unit cell.

with a solution of S_8 (1 g, 3.9 mmol) in benzene (10 ml). The system was left to stand at room temperature for 4 d. Large green needle-shaped crystals were isolated by decantation, washed with heptane and dried at 60°C/0.1 torr. Yield 0.4 g (57%).

IR spectrum (ν , cm⁻¹): 605 m., 670 w., 755 m., 800 s., 870 m., 1005 m., 1155 s., 1355 m., 1380 w., 1425 w.br., 290 w.br., 2970 w.br.

$(C_5H_5)_2Cr_2(\mu - OCMe_3)_2(\mu - Se)$ (IV)

A twenty-fold excess of powdered selenium metal was added to the red-brown solution of $Cp_2Cr_2(\mu$ -OCMe₃)₂ (obtained from the reaction of Cp_2Cr (0.5 g, 2.74 mmol) with HOCMe₃) in pentane (15 ml). The reaction mixture was stirred with a magnetic stirrer for 2 d to give a brown-green solution, which was evaporated to dryness at 22°C/0.1 torr. The brown-green residue was washed with 25 ml of cold (-70°C) pentane and dissolved in 30 ml of pentane. The brown-green solution was concentrated to 10 ml at 22°C/01 torr and left to stand at -18°C for 2 d. The brown-green single crystals were isolated from the mother liquor by decantation, washed with cold (-70°C) pentane and dried in stream of argon flow at 22°C. Yield 0.4 g.

IR spectrum (ν , cm⁻¹): 545 m.br., 810 s., 920 m.br., 1030 m.br., 1165 s., 1350 m., 1420 m.br., 2955 w.br.

Thermolysis of $(C_5H_5)_2Cr_2(\mu$ -OCMe₃)₂(μ -Se) (IV)

An excess of selenium metal was added to the red-brown solution of $Cp_2Cr_2(\mu - OCMe_3)_2$ (obtained from the reaction of Cp_2Cr (0.5 g, 2.74 mmol) with HOCMe_3) in toluene (25 ml). The reaction mixture was refluxed for 2 h, the brown-green solution thus formed was filtered and the solvent was evaporated in an argon flow at 120°C. The solid residue was extracted by hot heptane until it became colourless (solution A) (40–60 ml altogether). Afterwards the green extract (A) was concentrated at 120°C to 5–8 ml and cooled to $-18^{\circ}C$. After one day, the large green prisms $Cp_2Cr_2(OCMe_3)_2(\mu$ -OCMe_3)_2 [3] was isolated from the solution by decantation, washed with cold ($-20^{\circ}C$) heptane and dried at $60^{\circ}C/0.1$ torr. Yield 0.1 g (14%).

The fine brown-black crystalline, insoluble $(C_5H_5)_4Cr_4Se_4$, which remained after the extraction with hexane, was washed with hexane and dried at 60 ° C/0.1 torr. Yield 0.17 g (32%).

IR spectrum (ν , cm⁻¹): 800 s., 900 w.br., 1000 m.br., 1420 w.br. Mass spectrum *: (Cp₄Cr₄Se₄)⁺ (m/z 784), (Cp₃Cr₄Se₄)⁺ (m/z 719), (Cp₂Cr₄Se₄)⁺ (m/z 654), (CpCr₄Se₄)⁺ (m/z 589), (Cr₄Se₄)⁺ (m/z 524).

Thermolysis of $(C_5H_5)_2Cr_2(\mu$ -OCMe₃)₂(μ -Te) (IVa)

The reaction of $Cp_2Cr_2(\mu$ -OCMe₃)₂ with the tellurium metal was performed as described for Se, and yielded 0.05 g (6.9%) of $Cp_2Cr(\mu$ -OCMe₃)₂(OCMe₃)₂ [3] and 0.23 g (35%) of $Cp_4Cr_4Te_4$ respectively.

IR spectrum of $Cp_4Cr_4Te_4$ (ν , cm⁻¹): 795 s., 995 m., 1410 w.br. Mass spectrum of $Cp_4Cr_4Te_4$: ($Cp_4Cr_4Te_4$)⁺ (m/z 980), ($Cp_3Cr_4Te_4$)⁺ (m/z 915), ($Cp_2Cr_4Te_4$)⁺ (m/z 850), ($CpCr_4Te_4$)⁺ (m/z 785), (Cr_4Te_4)⁺ (m/z 720).

References

- 1 M.H. Chisholm, F.A. Cotton, M.W. Extine, D.C. Rideout, Inorg. Chem., 18 (1979) 120.
- 2 S.E. Nefedov, A.A. Pasynskii, I.L. Eremenko, B. Orazsakhatov, O.G. Ellert, V.M. Novotortsev, S.B. Katser, A.S. Antsyshkina, M.A. Porai-Koshits, J. Organomet. Chem., 345 (1988) 97.
- 3 S.E. Nefedov, A.A. Pasynskii, I.L. Eremenko, B. Orazsakhatov, V.M. Novotortsev, O.G. Ellert, A.F. Shestakov, A.I. Yanovskii, Yu.T. Struchkov, J. Organomet. Chem., 384 (1989) 279.

^{*} We thank Dr. D.V. Zagorevsky for carrying out the mass-spectral experiments.

- 4 I.L. Eremenko, A.A. Pasynskii, Yu.V. Rakitin, O.G. Ellert, V.M. Novotortsev, V.T. Kalinnikov, V.E. Shklover, Yu.T. Struchkov, J. Organomet. Chem., 256 (1983) 291.
- 5 A.A. Pasynskii, I.L. Eremenko, Yu.V. Rakitin, V.M. Novotortsev, V.T. Kalinnikov, G.G. Aleksandrov, Yu.T. Struchkov, J. Organomet. Chem., 165 (1979) 57.
- 6 I.L. Eremenko, S.E. Nefedov, A.A. Pasynskii, B. Orazsakhatov, O.G. Ellert, Yu.T. Struchkov, A.I. Yanovsky, D.V. Zagorevskii, J. Organomet. Chem., 368 (1989) 185.
- 7 R.B. King, "Organometallic synthesis. 1. Transition metal compounds". Academic Press, New York-London, 1965.
- 8 V.M. Novotortsev, Ph.D. Thesis, Moscow, 1974.